Conceptual design of flapping-wing micro air vehicles.

نویسندگان

  • J P Whitney
  • R J Wood
چکیده

Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Ultralight High-Voltage Power Circuits for Flapping-Wing Robotic Insects

Flapping-wing robotic insects are small, highly maneuverable flying robots inspired by biologicalinsects and useful for a wide range of tasks, including exploration, environmental monitoring, searchand rescue, and surveillance. Recently, robotic insects driven by piezoelectric actuators have achievedthe important goal of taking off with external power; however, fully autonomous operation requir...

متن کامل

The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight

Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit flies. Here we present our experience with designing and building micro flapping air vehicles that ...

متن کامل

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

Theoretical analysis and experimental verification for sizing of flapping wing micro air vehicles

To design efficient flapping wing micro air vehicles (FWMAVs), a comprehensive sizing method based on theoretical and statistical analyses is proposed and experimentally verified. This method is composed of five steps including defining and analyzing the MAV mission, determining the flying modes, defining the wing shape and aspect ratio of the wing, applying the constraint analysis based on the...

متن کامل

Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics

In this paper, the energetics of a flapping wing micro air vehicle is analyzed with the objective of design of flapping wing air vehicles. The salient features of this study are: (i) design of an energy storage mechanism in the air vehicle similar to an insect thorax which stores part of the kinetic energy of the wing as elastic potential energy in the thorax during a flapping cycle; (ii) inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinspiration & biomimetics

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2012